

Luis Gonzalez, Mathilde Gaillard, Lena Oliver, Britta Helmersson

Westinghouse Electric Sweden

Outline

- Background
- Coolant chemistry in VVER and PWR comparison
- Westinghouse fuel performance experience in VVER environments

Westinghouse VVER fuel market in Europe

In total 16* VVER-440 and 17 VVER-1000 units in Europe

Westinghouse has fuel contracts and licensing ongoing for the green ones and negotiating with the red plant

*Two are new (Mochovce unit 3 starting-up, unit 4 close to completion)

Background

- VVER and PWRs:
 - Many similarities in their thermohydraulic principles and their coolant chemistry.
 - Differ both in the design of the primary system and auxiliary systems.
- Can Westinghouse fuel be used in VVERs from a chemistry perspective?

Figure taken from:

https://neutronbytes.com/2021/09/06/ukraine-opens-for-new-nuclear-business-with-america/

Main chemistry differences between PWR and VVER

- Reactor coolant alkalinity.
- Reducing conditions (H₂).
- Control and diagnostic parameters.

Alkalinity Control

- PWRs: Lithium (LiOH).
- VVERs: the sum of of K++Li+
 +Na+ or K_{tot}
- Maximum K_{tot} seen is equivalent to a maximum lithium concentration of 3.8 mg/L:
 - For comparison, Westinghouse maximum lithium concentration is 3.5 mg/L.

Reducing conditions (H₂)

- PWR/Westinghouse:
 - limit of 25 50 cc/kg.
- VVER: limits can go from 20 to 60 cc/kg
 - Values usually closer to the lower end of the range.
- Not expected to cause fuelchemistry-related issues since levels of hydrogen required to suppress radiolysis during power operation are in the range of 5 mL/L.

Control and Diagnostic Parameters

- Guidelines Similarities between VVER and EPRI/Westinghouse PWR:
 - Anions (Cl, F, SO₄), H₂, pH_T, O₂.
- Guidelines difference VVER plant and EPRI/Westinghouse PWR:
 - Most VVERs do not have a specific limit for silica and zeolites (Al, Ca, Mg).
 - VVERs have limits for parameters that Westinghouse does not, (e.g. Fe, NO₃, TOC).
- VVERs plants normally respect the limits for all parameters.

D	EPRI/Westinghouse	\0/ C D-*
Parameters	PWR	VVERs*
Cl, μg/L	<50	<50
F, μg/L	<50	<50
SO ₄ , μg/L	<50	<50
H ₂ , μg/L	25-50	20 – 60
рН _т	6.9 – 7.4	7.0 – 7.2
O ₂ , μg/L	<5	<5
	F, μg/L SO ₄ , μg/L H ₂ , μg/L pH _T	Cl, μ g/L <50 F, μ g/L <50 SO ₄ , μ g/L <50 H ₂ , μ g/L 25-50 pH _T 6.9 - 7.4

^{*}Only the strictest limit is listed for power plants.

^{*}Most of the power plants do not have a limit for these parameters or might have looser limits.

Control and Diagnostic Parameters

Control and Diagnostic Parameters

Steam generators

- In PWR: Ni-based alloys
 - Higher levels of Co-58 are expected.
- In VVER: stainless steels
 - Co-60 will not be severely affected.

Fuel Performance Experience

- LTAs and fuel assemblies sent to different VVERs.
- Experience shows even lower corrosion than PWRs.
- Fuel rods looked good with corrosion within expected levels.
- Generally low crud levels.

Example taken from S. El Jamal, S. Buddas, L. Javanainen, L. Oliver, B. Helmersson, R. DeVito. Comparison between Loviisa VVER-440 and PWR Operating experience. To be presented in NPC conference. 2025.

Crud Data

- Crud has been observed in one VVER-440, which can be compared to PWR:
 - Mainly zirconium and iron oxide on both.
 - High nickel oxide content in the PWRs due to the materials of the SGs.
 - Presence of Ca and Si in the VVER: Zeolite formers which can potentially densify crud

Element composition	PWR (%)	VVER-440 (%)
Ni	54.8	-
Fe	34.5	10.3
Cr	8.3	-
Ca	-	7.1
Si	-	4.9
Unknown	-	77.7

Conclusions

- Most parameters measured in VVERs are in accordance with the operating levels and guidelines used for Western PWRs.
 - Hydrogen levels have been low but acceptable in Westinghouse experience.
- Low corrosion and crud has been observed.
- Westinghouse fuel is compatible with the coolant chemistry of VVERs if conditions are maintained.

